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Quantitative structure-property relationship (QSPR) method is
used to study the correlation models between the structures of a
set of diverse organic compounds and their log P. Molecular
descriptors calculated from structure alone are used to describe
the molecular structures. A subset of the calculated descrip-
tors, selected using forward stepwise regression, is used in the
QSPR models development. Multiple linear regression (MLR)
and radial basis function neural networks (RBFNNs) are uti-
lized to construct the linear and non-linear correlation model,
respectively. The optimal QSPR model developed is based on a
7-17-1 RBFNNs architecture using seven calculated molecular
descriptors. The root mean square ervors in predictions for the
training, predicting and overall data sets are 0.284, 0.327 and
0.291 log P units, respectively.

Keywords radial basis function neural network, QSPR, molec-
ular descriptor, log P

Introduction

Octanol-water partition coefficient is an important
fundamental property of an organic compound. Its loga-
rithm (log P) has been widely used to measure the hy-
drophobicity (or lipophilicity) of chemicals, which is of
great importance in toxicology, pharmaceutical and envi-
ronmental science. Many reports have shown its correla-
tion with numerous physical and biological processes. As
a result of the importance of this property, it would be
very useful to develop predictive models for it. Many pre-
vious works have aimed at predicting log P and several
excellent reviews are available.'> The most promising
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method is to use QSPR, in which descriptors derived from
molecular structure alone to predict log P have been em-
ployed. The advantage of this approach is that the de-
scriptors used can be calculated from molecular structure
alone and are not dependent on any experiment proper-
ties. To develop a QSPR, molecules must be described
using molecular structural descriptors and retain as much
structural information as possible. In recent years there
has been a shift from purely empirical parameters to cal-
culated descriptors, such as quantum chemistry and topo-
logical descriptors. After the calculation of molecular de-
scriptors, linear methods, such as multiple linear regres-
sion (MLR), principal component regression (PCR) and
partial least squares (PLS) or non-linear methods, such
as neural networks can be used in the development of a
mathematical relationship between the structural descrip-
tors and the property. Neural networks are particularly
useful in cases where it is difficult to specify an exact
mathematical model, which describes a specific structure-
property relationship.®’ They have been widely used to
predict physico-chemical properties.®” Most of the previ-
ous models to calculate log P have been derived using
MLR, and only limited work used neural networks trained
by the back-propagation algorithm. Compared with BP
neural networks, the parameters of radial basis function
neural networks (RBFNNs) can be adjusted by fast linear
methods . The optimization of its topology and learning pa-
rameters are easy to implement.'®'’ Many problems in
chemistry and chemical engineering have been successful-
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ly solved by the use of RBFNNs; multivariate calibra- , Continued
tion, 202! QSPR%'® and classification. % No.  Compound log P MLR  RBFNNs

The goal of the present work is to extend our previous 26 1-Bromoheptane 4.36 4.609 4.754
work®? and establish a QSPR model that can be used for 27 1-Bromohexane 3.80 3.986 4.106
the prediction of log P of organic compounds from their 28 Bromomethane 1.19  0.930 1.056
molecular structures. MLR and RBFNNs are utilized to es- 29 Benzylbromide 2.92 3.255 3.339
tablish quantitative linear and non-linear relationship be- 30°  1-Bromopropane 4.8 5.2 5397
tween log P and molecular descriptors, respectively. 31 1-Bromopentane 3.37  3.3711 3.467

32 1-Bromopropane 2.10 2.134 2.205
Method ology 33 2-Bromopropane 1.90 1.953 2.015
34 3-Bromopropene 1.79 1.683 1.656
35 1,3-Butadiene 1.99 1.413 1.515

All log P data of 271 compounds in the present in- 36  Butanal 0.88 0.733 0.508
vestigation were taken from the literature.’ A complete list 37%  Butanoic acid 0.79  0.49 0.697
of the compounds with experimental log P values is shown 38 1-Butanol 0.84 1.1 0.877
in Table 1. The data set was divided into two subsets: a 39 2-Butanol 0.65 0.987 0.723
training set of 232 compounds and a predicting set of 39 40  2-Butanone 0.29 0.579 0.481
compounds (marked with asterisk). The training set Was 47 52 Butone 233 1717 179
used to adjust the parameters of the RBFNNs and the pre- 42 trans-2-Butene 2.31  1.709 1.710
dicting set was used to evaluate its prediction ability. 43 Butyl acetate 1.82  1.490 1.703

44°  Butylamine 0.86 0.752 0.850

Table 1 Compounds and the predicted results of log P 45 tert-Butylamine 0.40 0.431 0.566
No.  Compound log P MIR RBFNNs 46 Butylbenzene 4.26 4.373 4.363
1 Acetic acid -0.17 -0.271 -0.154 47 Butyl methacrylate 2.8 2.190 2.455
2¢ 2-Propanone -0.24 0.034 0.047 48 p-Butylphenol 3.65 3.241 3.04
3 Acetophnone 1.63 2.048 1.942 49 Chlorobenzene 2.84 2.722 2.835
4 Allyl alcohol 0.17 0.293 0.151 50 1-Chlorobutane 2.64 2.750 2.829
5 Allyamine 0.03 -0.164 0.030 51  Chloroethane 1.43 1.520 1.598
6 Aniline 0.90 0.667 0.837 52 Chloroethene 1.38 1.068 1.096
7 Anisole 2.11 1.939 1.777 53 1-Chlorcheptane 4.15 4.609 4.754
8 Benzaldehyde 1.48 1.637 1.601 54 Chloromethane 0.91 0.930 1.056
9¢ Benzene 2,13 2.262 2.397 55 1-Chloropropane 2.04 2.134 2.205

10 Benzeneacetaldehyde 1.78 2.149 1.992 56 2-Chloropropane 1.90 1.953 2.015

11 Benzeneacetic acid 1.41 1.920 2.072 57 o-Chlorotoluene 3.42 3.225 3.314

12 Benzeneethanamine 1.41 1.591 1.667 58%  m-Chlorotoluene 3.28 3.212 3.292

13 Benzeneethanol 1.36  2.172 2.021 59 p-Chlorotoluene 3.33 3.229 3.314

14 Benzenepropanol 1.88 2.721  2.484 60 trans-Cinnamic acid 2,13 2.382 2.542

15 Benzoic acid 1.88 1.533 1.719 61 Coranene 1.98 1.783 1.626
16°  Benzyl acetate 1.96 2.348 2.486 62 m-Cresol 1.98 1.779 1.617
17 Benzyl alcohol 1.05 1.747 1.583 63 p-Cresol 1.97 1.782 1.626
18 Benzylamine 1.09 1.136 1.282 64 1,4-Cyclohexadiene 230 2.229 2.328
19 Benzyl methyl ether 1.35 2.321 2.179 65°  Cyclohexane 3.44 2.780 2.858
20 Bromobenzene 2.9 2.722 2.835 66 Cyclohexanol 1.23  1.567 1.363
21 2-Bromobenzoic acid 2,20 1.807 2.073 67 Cyclohexanone 0.81 1.231 1.178
22 1-Bromobutane 275  2.750 2.829 68 Cyclohexene 2.8 2.445 2.414
23 Bromochloromethane 1.41 1.520 1.598 69 2-Cyclohexen-1-one 0.61 1.129 1.090
A Bromocyclohexane 3.20 3.297 3.32% 70 Cyclohexylemine 1.49 1.147 1.223
25 Bromoethane 1.60 1.520 1.598 71 Cyclooctane 4.45 3.939 3.944
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No.  Compound -log P MLR  RBFNNs No.  Compound log P MILR RBFNNs
72*  Cyclopentane 3.00 2.191 2.287 118  p-Ethyltoluene 3.63 3.766 3.827
73 Decane 6.25 5.859 6.030 119  Ethyl vinyl ether 1.04 1.010 0.766
74 Decanoic acid 4.0 3.478 3.949 120  Fluorobenzene 2,27 2.217 2.4
75 1-Decanol 4.57 4.508 4.356 121*  Fluromethane 0.51 0.145 0.589
76 2-Decanone 3.77 3.961 3.646 122 1-Fluoropentane 2.33  2.435 2.328
77 Dibutyl ether 3.21 3.566 3.443 123 Formic acid ~0.54 -0.59 -0.642
78 o-Dichlorobenzene 3.33% 3.234 3.165 124  Heptane 4.50 3.986 4.106
79°  m-Dichlorobenzene 3.48 3.212 3.292 125  1-Heptanol 2.62 2.745 2.554
80 p-Dichlorobenzene 3.33 3.229 3.314 126 2-Heptanol 2.31  2.559 2.315
81 Dichlorodifluoromethane 2.16 1.566 2.006 127  3-Heptanol 2,24 2.544 2.305
82 1, 1-Dichloroethane 1.79 1.953 2.015 128¢ 4-Heptanol 2.22  2.545 2.305
83 cis-1,2-Dichloroethene 1.86 1.713 1.710 129 2-Heptanone 1.98  2.204 1.983
84 trans-1,2-Dichloroethene 1.93 1.708 1.710 130 1-Heptene 3.99 3.573 3.528
85 Dichloromethane 1.25 1.520 1.598 131  Heptylamine 2.57 2.341 2.381
86  1,2-Dichloropropane 2.00 2.134 2.205 132 Hexachlorobenzene 5.47 5.400 5.459
87 cis-1,3-Dichloropropene 2.03 2.330 2.293 133 Hexachloroethane 4.00 4.069 4.053
88 Diethylamine 0.58 0.760 0.850 134  Hexadecanoic acid 7.17  6.802 7.201
89 Diethylcarbonate 1.21  1.302 1.738 135% 1,5-Hexadiene 2.80 2.704 2.663
90 Diethyl ether 0.89 1.340 1.043 136 Hexanal 1.78 1.827 1.626
91 Difluoromethane 0.20 0.809 0.202 137  Hexanoic acid 1.92  1.460 1.715
92 Diisopropyl ether 1.52  2.097 1.872 138 1-Hexanol 2.03 2.19 1.970
93¢  Dimethylamine -0.38 -0.206 0.09 139  2-Hexanol 1.76  2.001 1.751
94 3, 3-Dimethyl-2-butanol 1.48 1.770 1.575 140  3-Hexanol 1.65 2.002 1.751
95 Dimethyl ether 0.10 0.276 0.037 141  2-Hexanone 1.38  1.659 1.451
96 N, N-Dimethylformamide -1.01 -1.286 -0.929 142¢ 1-Hexene 3.40 2.947 2.94
97 2,2-Dimethyl-1-propanol 1.31  1.339 1.121 143 Hexylamine 2.06 1.796 1.847
98 Dipropylamine 1.67 1.799 1.847 144  Hexylbenzene 5.52 5.529 5.407
99 Dipropyl ether 2.03 2.384 2.195 145  1-Hexyne 2.73  2.580 2.403
100°  Dodecanoic acid 4.60 4.623 5.081 146 5 * Hexyn-2-one 0.58 1.352 1.209
101 1-Dodecanol 5.13  5.663 5.547 147  Iodobenzene 3.28 3.105 3.238
102 Epichlorohydrin 0.30 0.716 0.535 148 1-Iodobutane 3.00 2.912 2.956
103  Ethanol -0.30 0.080 —0.069 149°  lodoethane 2.00 1.910 2.038
104  Ethyl acetate 0.73 0.508 0.689 150  1-Iodoheptane 4.70 4.494 4.569
105  Eethyl acrylate 1.32 0.866 1.054 151  Todomethane 1.50 1.547 1.718
106  Ethylamine -0.13 -0.225 0.055 152 1-Iodopropane 2.50 2.348 2.462
107¢  p-Ethylaniline 1.96 1.505 1.561 153 Isobutylbenzene 4.01 4.312 4.319
108  Ethylbenzene 3.15 3.256 3.339 154  Isopropylamine 0.26 0.070 0.230
109  Ethyl benzoate 2.64 2.280 2.498 155  Isopropylbenzene 3.66 3.745 3.719
110  Ethylene oxide -0.30 -0.250 -0.299 156  Isopropyl benzoate 3.18 2.615 2.905
111  Ethyl methacrylate 1.94 1.629 1.963 157  1-Isopropyl-4-methylbenzene 4.10 4.267 4.262
112 Ethylmethylamine 0.15 0.286 0.424 158  Methacrylic acid 0.93 0.269 0.562
113 o-Ethylphenol 2.47 2.213 2.077 159  Methanol -0.74 -0.403 -0.433
114  m-Ethylphenol 2.50 2.211 2.077 160  Methyl acetate 0.18 0.130 0.232
115 p-Ethyiphenol 2.50 2.212 2.077 161  4-Methylacetophenone 2.19 2.419 2.320
116  Ethyl propanoate 1.21 0.985 1.176 162  Methyl acrylate 0.80 0.389 0.580
117 o-Ethyltoluene 3.53 3.767 3.827 163°  Methylamine -0.57 -0.539 -0.175
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Continued Continued
No.  Compound log P MIR RBFNNs No.  Compound log P MLR RBFNNs
164  o-Methylaniline 1.3 1.062 1.190 210  Pentylamine 1.49 1.264 1.330
165  m-Methylaniline 1.40 1.046 1.153 211  Pentylbenzene 4.90 4.943 4.882
166  p-Methylaniline 1.39  1.062 1.190 212°  1-Pentyne 1.98 1.882 1.846
167  3-Methylanisole 2.66 2.333 2.22 213 Phenetole 2.51  2.319 2.250
168  4-Methylanisole 2.81 2.337 2.220 214 Phenol 1.48 1.349 1.230
169  2-Methylbenzaldehyde 2.26  2.039 1.937 215  Phenyl acetate 1.49 1.938 2.066
170  o-Methylbenzeneacetic acid 1.80 2.284 2.456 216  1-Phenylethanol 1.42  2.137 2.005
171 3-Methylbenzenemethanol 1.60 2.141 2.005 217  Phenyl formate 1.26  1.761 1.689
172 4-Methylbenzenemethanol 1.58 2.141 2.005 218  1-Phenyl-1-propanone 2.19 2.456 2.338
173 Methyl benzoate 2.20 1.884 2.083 219°  Piperidine 0.84 0.705 0.834
174 2-Methyl-2-butanol 0.80 1.325 1.115 220  Propanal 0.59 0.185 0.133
175  3-Methyl-1-butanol 1.28° 1.491 1.231 221  Propancic acid 0.33 0.103 0.250
176 3-Methyl-2-butanol 1.28° 1.392 1.150 222 1-Propanol 0.25 0.597 0.375
177  3-Methyl-2-butanone 0.56 0.981 0.906 223 2-Propanol 0.05 0.431 0.258
178 Methyl tert-butyl ether 0.94 1.489 1.239 224  Propargyl alcohol -0.38 0.126 0.056
179  Methylcyclopentane 3.37  2.715 2.759 225  Propyl acetate 1.24  0.981 1.182
180  Methyl decancate 4.41 4.1224 4.510 226  Propylamine 0.48 0.282 0.424
181  5-Methyl-2-hexanone 1.88 2.086 1.881 227  Propylbenzene 3.69 3.804 3.837
182 Methyl methacrylate 1.33 0.769 0.974 228  Propyl formate 0.83 0.677 0.850
183 5-Methyl-2-octanone 2.92 3.182 2.94 229 2-Propylphenol 2.93 2.736 2.507
184°  Methyloxirane 0.03 0.221 0.086 230  4-Propylphenol 3.20 2.749 2.533
185  4-Methyl-2-pentanone 1.31 1.558 1.372 231  Octadecanoic acid 8.23 7.902 8.092
186  4-Methyl-1-pentene 2.50 2.767 2.689 232 Styrene 3.05 3.198 3.229
187  4-Methylphenyl acetate 2.11  2.332 2.447 233¢ 1,2,3,4-Tetrachlorobenzene 4.55 4.257 4.291
188  2-Methyl-1-propanol 0.76  0.990 0.729 234 1,2,3,5-Tetrachlorobenzene 4.65 4.244 4.266
189  2-Methyl-2-propanol 0.35 0.870 0.653 235  1,2,4,5-Tetrachlorobenzene 4.51  4.253  4.266
190 2-Methyltetrahydrofuran 1.85 1.181 1.031 236  1,1,2,2-Tetrachloroethane 2.39  3.068 3.088
191¢  2-Nonanone 4.02 3.946 3.760 237  Tetrachloroethene 2.88 2.783 2.84
192 1-Nanene 3.16 3.313 3.086 238  Tetrachloromethane 2.64 2.462 2.536
193 Octane 5.15 4.817 4.773 239  Tetradecanoic acid 6.1 5.684 6.176
194 Octanoic acid 3.05 2.492  2.807 240* 1,2,3,4-Tetramethylbenzene 4.00 4.257 4.291
195  1-Octanol 3.07 3.382 3.156 241  1,2,3,5-Tetramethylbenzene 4.10 4.244 4,266
196  2-Octanol 2.90 3.194 2.880 242 1,2,4,5-Tetramethylbenzene 4.10 4.253 4.266
197  4-Octanol 2.68 3.181 2.867 243 Toluene 2.73  2.722 2.835
198°  2-Octanone 2.37 2.754 2.528 244 o-Toluic acid 2.32  1.809 2.069
199 1-Octene 4.57 4.190 4.143 245  m-Toluic acid 2.37 1.817 2.069
200  Octylbenzene 6.30 6.719 6.423 246  p-Toluic acid 2.34 1.814 2.069
201  Pentachlorobenzene 5.03 4.769 4.737 247¢  Tribromomethane 2.38  1.953 2.015
202 1,4-Pentadiene 2.48 1.992 2.030 248 1,2, 3-Trichlorobenzene 4,04 3.728 3.779
203  Pentamethylbenzene 4.56 4.769 4.737 249  1,2,4-Trichlorobenzene 3.98 3.731 3.719
204  1-Pentanol 1.51 1.667 1.406 250  1,3,5-Trichlorobenzene 4.02 3.721 3.779
205°  2-Pentanol 1.25 1.486 1.223 251  1,1,1-Trichloroethane 2.49 2.462 2.536
206  3-Pentanol 1.21 1.473 1.216 252 1,1,2-Trichloroethane 2.38 2.551 2.583
207  2-Pentanone 0.84 1.053 0.956 253 Trichloroethene 2.53 2.158 2.129
208  3-Pentanone 0.82 1.084 0.963 254*  Trichloromethane 1.97 1.953 2.015
209 1-Pentene 2.20  2.309 2.272 255 1,2, 3-Trichloropropane 2.63 3.167 3.188
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No.  Compound log P MIR RBFNNs

2,2, 3-trifluoro-3-
256 methylbutane 3.16 3.255 3.211
257  Triethylamine 1.45 1.606 1.604
258  Trimethylamine 0.16  0.157 0.357
259  1,2,3-Trimethylbenzene 3.60 3.731 3.779
260  1,2,4-Trimethylbenzene 3.63 3.731 3.779
261¢ 1,3,5-Trimethylbenzene 3.2 3.721 3.779
262  2,3,6-Trimethylbenzene 2.67 2.673 2.477
263  2-Undecanone 4.09 4.505 4.192
264  Vinyl acetate 0.73 0.429 0.547
265  o-Xylene 3.12  3.225 3.314
266  m-Xylene 3.20 3.213 3.292
267  p-Xylene 3.15 3.229 3.314
268% 2,4-Xylenol 2.35  2.175 2.049
269  2,5-Xylenol 2.3 2.181 2.060
270 2,6-Xylenol 2,36 2.175 2.049
271 3,5-Xylenol 2.35 2.178 2.049

¢ Predicting set.

Three types of molecular descriptors are calculated to
represent molecular structures: constitutional, topological
and quantum chemistry descriptors. Constitutional de-
scriptors are basically related to the number of atoms and
bonds in each molecule. Topological descriptors include
valence and non-valence molecular connectivity indices
calculated from the hydrogen-suppressed formula of the
molecule, encoding information about the size, the com-
position and the degree of branching of a molecule. Quan-
tum chemical descriptors include information about bind-
ing and formation energies, partial atom charges, dipole
moment and energy levels in the molecule orbital. The
calculation of quantum chemistry descriptors was imple-

mented with semi-empirical PM3 Hamilton. Software 3D
QSAR/WHIM? was used to calculate constitutional and
topological descriptors. A full list of the calculated de-
scriptors can be seen from Table 2.

Once descriptors were generated, a forward stepwise
regression method was used to develop the linear model of
the property of interest, which takes the form below:

Y=bo+ by X;+ by Xy + -+ + b,X, (1)

In Eq. (1), Y is the property, that is, the depen-
dent variable, X;— X, represent the specific descriptors,
while b;—b, represent the coefficients of those descrip-
tors, and by is the intercept of this equation.

After the development of a linear model, RBFNNs
are used to develop of non-linear model. RBFNNs can be
described as a three-layer feedforward structure. As pre-
sented schematically in Fig. 1, the RBFNNs consist of
three layers: input layer, hidden layer and output layer.
The input layer does not process the information; it only
distributes the input vectors to the hidden layer. The hid-
den layer of RBFNNs consists of a number of RBF units
(ny) and bias (by) . Each hidden layer unit represents a
single radial basis function, with associated center posi-
tion and width. Each neuron on the hidden layer employs
a radial basis function as non-linear transfer function to
operate on the input data. The most often used RBF is
Gaussian function that is characterized by a center (¢;)
and width (r;). The RBF functions by measuring the Eu-
clidean distance between input vector (x) and the radial
basis function center (c;) and performs the non-linear
transformation with RBF in the hidden layer, which is
given as follows:

Table 2 Descriptors, coefficients, standard error and 7T-values for the linear model

Chemical meaning Descriptor Coefficient  Standard emor  nardized T
coefficients

Intercept b, 7.382 1.735 4,256
Sum of atomic polarizabilities Sp 0.910 0.024 2.538 37.7717
Index of atomic composition IAC -0.390 0.015 -2.004 -25.839
Number of F atom NF 1.893 0.123 0.349 15.334
Number of O atom NO 1.119 0.113 0.564 9.885
Kier flexibility index PHI 0.0997 0.013 0.161 7.782
Mean atomic Sanderson electronegativity ME -8.073 1.766 ~-0.129 -4.571
Subpolarity parameter Spp -1.107 0.300 -0.165 -3.696
R (correlation coefficient) 0.974

RMS (root mean square error) 0.346




Vol. 20 No. 8 2002

Chinese Journal of Chemistry 727

Input layer

Hidden layer Output layer

Fig. 1 Typical architecture of the RBFNNs.
hi(x) = exp(- IIx—chIZ/rjz) 2)

In which, h; is the notation for the output of the jth RBF
unit. For the jth RBF ¢; and 7; are the center and width
respectively. The operation of the output layer is linear,
which is given in Eq. (3)

yi(x) = j%wkjhj(x) + by (3)

Where y; is the kth output unit for the input vector x,
wy; is the weight connection between the kth output unit
and the jth hidden layer unit, and b; is the bias.

From Eq. (1) and Eq. (2), It can be seen that
designing an RBFNN involves selecting centers, number
of hidden layer unints, width and weights. The widths of
the radial basis function can either be chosen the same for
all the units or be chosen different for each unit. In this
paper, considerations were limited to the Gaussian func-
tions with a constant width, which was the same for all u-
nits. Forward subset selection routine®-3!
lect the centers from training set samples. The adjustment

was used to se-

of the connection weight between hidden layer and output
layer was performed using a least-squares solution after
the selection of centers and width of radial basis func-
tions .

The overall performance of RBFNNs is evaluated in
terms of root mean squared error (RMS) according to the
equation below;

?::1( Ye— 3’1:)2

ng

RMS = (4)

Where y; is the desired output and 3’,, is the actual output
of the network, and n, is the number of compounds in an-
alyzed set.

All calculation programs were written in MATLAB
M-file and compiled using MATCOM compiler running
Redhat Linux 6.0 operating system on a Pentium 266 PC
with 128 M RAM.

Resuits and discussion

Firstly, stepwise regression routine was used to de-
velop the linear model for the prediction of log P by using
calculated structural descriptors. The best linear model
contains seven molecular descriptors. The regression coef-
ficients of the descriptors and their physico-chemical
meaning are listed in the Table 2. This model produced a
RMS error of 0.336 and a correlation coefficient of 0.974
for the training set compounds. The external predicting
set had a RMS error of 0.346 using leave-one-out cross-
validation. The predicted log P using MLR are shown in
Table 1 and Fig. 2.

10

8 8

6 -

".'.

4 +

. "
‘:l

Predicted log p

2t

0 -

20 . . . .
2 0 2 4 6 8 10
Experimental log P

Fig. 2 Predicted vs. experimental log P (MLR).

The log P of a compound is determined by its parti-
tion between two phases of octanol-water and is a direct
consequence of the difference between the Gibbs free en-
ergies of solvation of studied molecule in these phases.
The difference of the Gibbs free energy between two sol-
vated states is due to the differences in favorable and un-
favorable interactions between the solvent and the solute.
These interactions include dispersion interaction, dipole-
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dipole interaction, dipole-induced interaction and hydro-
gen bonding interaction. The descriptors involved in the
present equation can represent these interactions and gain
some insight into the relative contributions of the different
interactions in the partition process. The dispersion inter-
action is mainly determined by the molecular size, as de-
scribed by one constitutional descriptor; sum of atomic
polarizabilities and two topological indices (index of atom-
ic composition and Kier flexibility index). The dipole-
dipole interaction was described by mean atomic Sander-
son electronegativity and subpolarity parameter. The hy-
drogen bonding information was contained in one constitu-
tional descriptor: the number of O atom.

After the establishment of a linear model, radial ba-
sis function network was used to develop a non-linear
model based on the same subset of descriptors. The
RBFNN has seven inputs (a set of seven molecular de-
scriptors) , one output layer unit (log P) and one hidden
layer of n, units. Such a RBFNN can be designed as 7 -
ny ~ 1 net to indicate the number of unit in input, hidden
layer and output layer, respectively. A RBFNN is com-
pletely specified by choosing the following parameters;
(a) the number ny of radial basis functions; (b) the
center ¢; and width r; of each radial basis function, and
(c) the connection weights wy; between jth hidden layer
unit and kth output unit.

The number of radial basis functions (the hidden
layer units) ny, greatly influences the performance of a
RBFNN. In this paper, the radial basis functions were
added one by one and terminated if no performance of the
networks was improved by adding a new basis function.
The centers of RBFNNs are determined with forward sub-
set selection method. The advantages of this method over
other center selection methods are that it can determine
the number of hidden layer units simultaneously and there
is no need to fix the number of hidden layer units in ad-
vance. This method goes through a process of selecting a
subset of radial basis functions from a larger set of candi-
dates (training set samples) . The model starts empty, the
radial basis function to add is the one, which reduces the
sum of squared errors most. This process of adding hidden
units and increasing the model complexity is continued till
some criterion such as GCV stops increasing. The criteri-
on of the selection used here is an approximation of the
leaving-one-out (LOO) cross-validation methods, accord-
ing to the equation below;

2 = &P[diag(PP)]‘zP& ()

Where 7 is the output of the network, P is the projection
matrix, which can be computed by P = I, — ZZ" from the
outputs matrix Z of hidden layer units and the unit matrix
I with dimension p, p is the patten number in training
sets. The LOO cross-validation method was used to pre-
vent the network from overfitting.

After the selection of the centers and number of hid-
den layer units, the connection weights can be easily cal-
culaied by linear least square methods.

w=yZ'(ZZ')™1 (6)

Where y is the matrix of training example targets, Z is
the matrix of hidden layer unit outputs, Z’ is the trans-
pose of matrix Z and w is the weight matrix connection
hidden layer and output layer.

The optimal width was selected by experimenting
with a number of trials and selecting the one most favored
by the model selection criterion; a width smaller than 1
gives poor prediction ability, varying the width indicates
that width has little effect on the performance of RBFNNs
if width exceeds 3.0. So the optimal width from 1.0 to
3.0 every 0.1 is selected. Each minimum error on LOO
cross-validation was plotted versus the width (Fig. 3) and
the minimum was chosen as the optimal conditions. In
this case; r=1.6 and n, =17.

0.65
0.60 +
055+
0.50 1
045 F
0.40
035}
0.30
0.25

RMS error on LOO cross-validation

I 15 2 25 3
Width of RBFNNs
Fig. 3 Width of RBFNNs vs. RMS error on LOO cross-valida-

ton.

Through the above process, the best number of hid-
den layer units and the optimum width are selected as 17
and 1.6, respectively. The selected centers and their
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distributions among training samples are listed in Tables 3
and 4. From the best network, the inputs in the predict-
ing set were presented with it and the results with
RBFNNs were obtained, which are shown in Table 1 and
Fig. 4. The network gives RMS of 0.327 for the predict-
ing set. The performance of RBFNN is better than that
obtained by multiple linear regression. Analysis of the re-
sults obtained indicates that the model proposed correctly
represents structural-property relationships of these com-

pounds.
10
+ Training set
8t + Predicting set

Predicted log P
N

2 0 2 4 6 8 10
Experimental log P

Fig. 4 Predicted vs. experimental log P (RBFNNs).

Table 3 Full list of centers selected for RBFNNs

Table 4 Full list of descriptors used

No. Compound

231 Octadecanoic acid

89 Diethyl carbonate

200 Octylbenzene

7 Dibutyl ether

73 Decane

131 Heptylamine

106 Ethylamine

122 1-Fluoropentane

221 Propionic acid

258 Trimethylamine

12 Benzeneethanamine
99 Dipropyl ether

119 Ethyl vinyl ether

91 Difluoromethane

132 Hexachlorobenzene

81 Dichlorodifluoromethane
178 Methyl tert-butyl ether

Descriptor  Chemical meaning

LUMO LUMO energy level

HOMO HOMO energy level

Xdip Dipole moment in the x axis

Ydip Dipole moment in the y axis

Zdip Dipole moment in the z axis

Dipole Dipole moment

HOF Heat of formation

ET Total energy

Electron Electronic energy

Core Core-core interaction energy

Qtot Total charge

SPP Subpolarity parameter

Ldip Local dipole moment

SP Sum of atomic polarizabilities (scaled on C atom)

SE Sum of atomic Sanderson electronegativities
(scaled on C atom)

SV Sum of atomic van der Waals volumes
(scaled on C atom)

ME Mean atomic Sanderson electronegativity
(scaled on C atom)

NF Number of F atoms

NC Number of C atoms

NO Number of O atoms

NC1 Number of Cl atoms

TPC Total path count

NH Number of H atom

NHA Number of hydrogen bonding acceptor

NHD Number of hydrogen bonding donor

MW Molecular weight

TPC Totoal path count

Chi0 Randic index of O order

Chil Randic index of 1 order

Chi2 Randic index of 2 order

IAC Index of atomic composition

PHI Kier flexibility index

IDM Mean information on magnitude of distance

ICEN Centric information index

IDE Mean information on distance equality

IDDE Information on equality of distance degrees

IDDM Information on equality of distance magnitude

IDMT Total information on magnitude of distance

IDET Total information on distance equality

ZM1 Zegreb index 1

e Zegreb index 2
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